“BREAST ON CHIP” IN PURDUE UNIVERSITY

      No Comments on “BREAST ON CHIP” IN PURDUE UNIVERSITY

Purdue University researchers have reproduced portions of the female breast in a tiny slide-sized model dubbed “breast on-a-chip” that will be used to test nanomedical approaches for the detection and treatment of breast cancer.

The model mimics the branching mammary duct system, where most breast cancers begin, and will serve as an “engineered organ” to study the use of nanoparticles to detect and target tumor cells within the ducts.

Sophie Lelièvre, associate professor of basic medical sciences in the School of Veterinary Medicine, and James Leary, SVM Professor of Nanomedicine and professor of basic medical sciences in the School of Veterinary Medicine and professor of biomedical engineering in the Weldon School of Biomedical Engineering, led the team.

“Breast cancer is the most common cancer in women in most countries, and in the U.S. alone nearly 40,000 women lost their lives to it this past year,” said Lelièvre, who is associate director of discovery groups in the Purdue Center for Cancer Research and a leader of the international breast cancer and nutrition project in the Oncological Sciences Center. “We’ve known that the best way to detect this cancer early and treat it effectively would be to get inside the mammary ducts to evaluate and treat the cells directly, and this is the first step in that direction.”

Lelièvre and Leary hope eventually to be able to introduce magnetic nanoparticles through openings in the nipple, use a magnetic field to guide them through the ducts where they would attach to cancer cells and then reverse the magnetic field to retract any excess nanoparticles.

The nanoparticles could carry contrast agents to improve mammography, fluorescent markers to guide surgeons or anticancer agents to treat the cancer, Leary said.

“Nanoparticles can be designed to latch on to cancer cells and illuminate them, decreasing the size of a tumor that can be detected through mammography from 5 millimeters to 2 millimeters, which translates into finding the cancer 10 times earlier in its evolution,” Leary said. “There also is great potential for nanoparticles to deliver anticancer agents directly to the cancer cells, eliminating the need for standard chemotherapy that circulates through the entire body causing harmful side effects.”

SOURCE:http://www.purdue.edu/newsroom/research/2011/110120LelievreLearyBreast.html

Related Posts Plugin for WordPress, Blogger...

Leave a Reply

Your email address will not be published. Required fields are marked *