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Foreword 
 
The 10th annual NSTI Nanotech Conference and Trade Show was held this year during 20-24 May at 
the Santa Clara Convention Center, in Santa Clara, California. The conference has grown this year to 
host 3000 attendees and 250 exhibitors, while the resulting proceedings boasts over 3000 pages of 
peer-reviewed micro and nanotechnology research. 
 
A number of authors publishing in the Joint Electronics and Microsystems Symposia track were 
invited to submit a revised version of their papers to this special issue. Papers were selected from a 
number of symposia within the track, including: MEMS & NEMS, Sensors & Systems, Micro & Nano 
Fluidics, and MSM – Modeling Microsystems. These symposia brought together researchers from a 
number of disciplines to discuss topics ranging from theoretical developments, to design and 
fabrication, through to industrial applications of MEMS and NEMS sensors, devices and systems. 
 
The joint symposia are motivated by the dream of smarter, smaller, and more complex systems that 
integrate micro and nano system technologies with intelligence, power and communication ability at 
the same micro or nano scale. The resulting increase in complexity poses an enormous challenge to 
engineers when designing, modeling, and fabricating such integrated micro and nano systems. The 
joint symposia aimed at bringing together researchers from different disciplines to exchange ideas 
about how to best develop such systems. 
 
As with the joint symposia, this special issue includes papers ranging from those with a higher level 
focus to those covering low-level physical aspects of MEMS and NEMS devices and their modeling 
and fabrication. Four of the papers presented in this special issue correspond to invited talks: Sanna et 
al., examine miniaturization trends in preventative medicine and include some results from the EU 
project ANGEL; Adams et al., describe the results of the NASA funded GEMSTONE project, which 
involved creating and field-testing a small system of atmospheric probes; French and Yang explore the 
opportunities and pitfalls of scaling, whilst Nieva presents a number of new trends for using MEMS 
sensors in harsh environments. 
 
We are very thankful both to the NSTI directors and Nanotech chairs (Dr. Matthew Laudon and Dr. 
Bart Romanovicz) and to the Sensors & Transducers Journal for offering the opportunity to publish 
this special issue. 
 

Guest Editors: 
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Abstract: MEMS and NEMS sensor systems that can operate in the presence of high temperatures, 
corrosive media, and/or high radiation hold great promise for harsh environment applications. They 
would reduce weight, improve machine reliability and reduce cost in strategic market sectors such as 
automotive, avionics, oil well logging, and nuclear power. This paper presents a review of the recent 
advances in harsh-environment MEMS and NEMS sensors focusing on materials and devices. Special 
emphasis is put on high-temperature operation. Wide-bandgap semiconductor materials for high 
temperature applications are discussed from the device point of view. Micro-opto mechanical systems 
(MOEMS) are presented as a new trend for high temperature applications. As an example of a harsh 
environment MOEMS sensor, a vibration sensor is presented. Copyright © 2007 IFSA. 
 
Keywords: MEMS, NEMS, MOEMS, Sensors, Harsh Environments, Fabry-Perot Interferometry 
 
 
 
1. Introduction 
 
Micro and nano electro mechanical systems (MEMS and NEMS) have emerged as a technology that 
integrates micro/nano mechanical structures with microelectronics, mainly for sensing and actuation 
applications. Silicon-based MEMS technology has enabled the fabrication of a broad range of sensor 
and actuator systems. These systems are having a great impact in areas that benefit from 
miniaturization and increased functionality. They have been commercialized for applications such as 
ink jet printing, crash sensing, and optical projection to name a few. The main advantage of silicon-
based technology is the possibility of integration with microelectronics. A great deal of attention is 
being drawn to the development of integrated MEMS and NEMS to produce smart devices and 
systems. In automotive or aerospace for example, a misfiring cylinder has a negative impact on the 
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health of the engine and the emissions control. When a cylinder misfires, the remaining cylinders 
operate at abnormally higher loads resulting in excessive cylinder pressure levels, overheating, knock, 
pre-ignition, and severe engine damage. Misfire is also accompanied with high emissions of unburned 
hydrocarbons and CO. Smart MEMS sensors capable of operating “in cylinder”, where the 
temperatures are around 400 °C for automotive engines or up to and above 900 °C for gas turbine 
engines, could continuously monitor the combustion quality of the cylinders of automotive engines 
reducing emissions and improving fuel economy. However, the mechanical and electrical properties of 
silicon (Si) limit their application in harsh environmental conditions. When the environment 
temperature is too high (>180 °C), conventional microelectronics suffer from severe performance 
degradation [1]. Hence, they must reside in cooler areas or be actively cooled. The additional 
components such as longer wires, extra packaging and/or bulky expensive cooling systems, add 
undesired size and weight to the system, which at the same time impact the overall reliability of the 
system. They also require extra supply voltage, which is undesirable for HT applications where power 
source is very limited. It is then clear that further development, in terms of new MEMS/NEMS 
materials (including new functional layers such as piezoelectric films) and/or new technologies, is 
needed to minimize these difficulties. This is especially important where high temperature capability is 
crucial to realizing improved electronic control and reducing weight. 
 
Silicon carbide (SiC) [2, 3] and group III nitride device technologies [5, 6] are promising for smart 
MEMS/NEMS sensors operating in harsh environments. In the past decade, tremendous progress has 
been made in the growth of single crystal SiC wafers and epitaxial growth of crystalline SiC layers on 
Si and/or SiC wafers [2, 10-15]. However, SiC wafers are not (yet) suitable for MEMS and NEMS, as 
micromachining of these wafers is still a challenge [2-4]. Issues such as high mechanical stress, 
deposition uniformity and low etch rates need to be tackled before high-quality SiC structural films 
can be produced [3]. In addition, the affinity of SiC to form carbides and/or silicides by reacting with 
metals at temperatures above 600 °C affect metal contacts degrading the performance of SiC MEMS 
and NEMS sensors [4]. Furthermore, very little is known about the elastic behavior and long-term 
stability of SiC micro- and nano-structures at elevated temperatures. Hence, despite the obvious 
benefits of using SiC for the development of MEMS and NEMS for harsh environments, there are still 
many hurdles that have to be overcome before it becomes appropriate for manufacturing and can be 
used reliably in commercial applications [2, 3]. Group III nitrides are beneficial as piezoelectric 
functional components for high temperature operation. For example, Aluminum nitride (AlN) 
preserves its piezoelectric properties up to 1150 °C [5] and gives the opportunity of building up on-
chip smart systems with a high degree of processing control. However, only a few reports exist about 
such applications [6] and despite of all the progress made in the last few years, they still cannot be 
used for integrated MEMS or NEMS devices. 
 
Remote sensing through optical signal detection has major advantages for safe signal transmission in 
harsh environments. It is highly resistant to electromagnetic interference (EMI) and radio frequency 
interference (RFI) and at the same time, it eliminates the necessity of on-board electronics, which has 
been one of the main obstacles in the development of smart MEMS sensors for high temperature 
applications. An economical way to deal with higher temperatures and other aggressive environmental 
conditions is to build MEMS sensors out of robust materials (e.g. Si, Silicon nitride, SiC) and integrate 
them with optical signal detection techniques to form MOEMS [7-9]. For instance, Fabry-Perot (FP) 
microstructures have been used to meet the demand of MEMS sensor systems for harsh environments 
[7, 8]. In this combination, the small and precise size of the sensing elements offers considerable 
flexibility in choosing the response range and sensitivity of the final sensors. Optical technology has 
also been used to power a wireless telemetry module for high temperature MEMS sensing and 
communication [9]. In this paper, we review the current status and the main obstacles in wide bandgap 
semiconductor devices and microsystem components for MEMS and NEMS. We also highlight recent 
advances and trends in MOEMS sensors in the context of using them for high temperature 
applications. The use of Fabry-Perot microstructures for the development of a new MOEMS 
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displacement sensor for high temperature applications is discussed. Analysis, modeling and 
experimental results are presented to show their sensitivity and accuracy. 
 
 
2. Silicon Carbide Semiconductor Devices 
 
SiC is the most mature and the only wide bandgap semiconductor that has silicon dioxide as its native 
oxide [10]. This allows for the creation of metal oxide semiconductor (MOS) devices. The outstanding 
material and electronic properties and chemical inertness of SiC make it a leading candidate for 
MEMS and NEMS in a variety of harsh conditions [2, 10-17]. Regarding its material properties, SiC 
has a knoop hardness of 2480 kg/mm2 compared to that of silicon (850 kg/mm2) [12]. In addition, SiC 
has a Young’s Modulus has a Young’s Modulus of 700 GPa, as compared to Si (190 GPa) [11a] or 
other wide bandgap semiconductors such as Gallium Nitride (295 GPa) [13] and AlN (310 GPa) [5]. 
When compared to silicon, SiC has a larger bandgap (2.3-3.4 eV), a higher breakdown field  
(30x105 V/cm), a higher thermal conductivity (3.2-4.9 W/cm K), and high saturation velocity (cm/s) 
[12]. Piezoresistive- and capacitive-based sensors are among the most widely used SiC MEMS and 
NEMS sensing mechanisms. 
 
 
2.1. Piezoresistive-Based Sensors 
 
The piezoresistive effect in SiC has been used for pressure, force, and acceleration sensors. In general, 
the piezoresistivity for wide band-gap semiconductors is comparable to that of Si but they can operate 
at much higher temperatures. However, the contact resistance variation at elevated temperatures can be 
indistinguishable from the piezoresistance change [16]. In addition, SiC has a relatively low gage 
factor (30 compared to 90 of Si [11]) which decreases the sensitivity of the sensors as the temperature 
increases. Okojie et al. [13] developed a piezoresistive pressure transducer which was made of 6H-SiC 
piezoresistors on a 6H-SiC substrate. The sensor was tested up to 600 °C and 200 psi but due to the 
significant decrease of the gage factor at high temperatures, the output of the transducer required a 
temperature compensation scheme above 400 °C. More recently, Wu et al. [14] developed bulk 
micromachined pressure sensors for HT applications using polycrystalline and crystalline 3C-SiC 
piezoresistors grown on a Si substrate. The piezoresistors fabricated from poly-SiC films showed - 
2.1 as the best gauge factor and exhibited sensitivities up to 20.9-mV/V psi at room temperature. 
Single-crystalline 3C-SiC piezoresistors exhibited a sensitivity of 177.6-mV/V psi at room temperature 
and 63.1-mV/V psi at 400 °C. Their estimated longitudinal gauge factor along the [100] direction was 
estimated at about -18 at room temperature but dropped to -7 at 400 °C. Atwell et al. [15] developed a 
bulk-micromachined 6H-SiC piezoresistive accelerometer for impact applications. The accelerometer 
was tested up to 40,000 g. Sensitivities ranging from 50 to 343 nV/g were measured for differing 
sensing elements but non-linear behavior was observed over the shock range relative to a commercial 
accelerometer (with sensitivity of 1.5 µV/g). 
 
 
2.2. Capacitive-Based Sensors 
 
Capacitive-based sensors have also been used to sense pressure, force, acceleration, and flow rate. 
They are attractive for HT applications because the device performance is not susceptible to contact 
resistance variations but they exhibit performance degradation due to the wiring parasitic capacitances 
and test setup. SiC capacitive sensors are mainly used for pressure sensing and they are mainly 
fabricated using bulk-micromachining techniques. Young et al. [16] developed a single crystal 3C-SiC 
capacitive pressure sensor fabricated on a silicon substrate. The sensor demonstrated sensing 
capabilities up to 400 °C and was tolerant of contact resistance variations. However, it exhibited 
different responses at different temperatures of operation, which was attributed to trapped air inside the 
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cavity and thermal mismatch. A promising approach to pressure sensing in corrosive environments 
was developed by Pakula et al. [17] using post-processing surface micromachining. The sensing 
membrane was fabricated in low-stress PECVD SiC. To avoid problems related with wiring parasitic 
capacitances, the sensor was integrated monolithically to a CMOS readout circuit. The sensor showed 
stable behavior from 10 mbar up to 5 bar. 
 
 
3. Optical MEMS Sensors 
 
Optical MEMS sensors are highly adaptable to harsh environments, can measure displacement, 
pressure, temperature and stress, can be easily incorporated into sensor arrays by using multiplexing 
methods, and are suitable for liquid and gas measurements. In addition, they are highly resistant to 
electromagnetic interference (EMI) and radio frequency interference (RFI) and at the same time, they 
eliminate the necessity of onboard electronics. However, simpler processing techniques and therefore 
lower manufacturing costs are desirable. Moreover, simplification of the sensing elements and the 
fabrication processes will be helpful for their mass production and commercialization. Fiber-Optic 
MEMS and MOEMS sensors are lately being developed for harsh environmental conditions [7, 18-20]. 
 
 
3.1. Fiber-Optic MEMS Sensors 
 
Fiber-optic MEMS are robust, highly resistant to EMI and RFI, and can potentially detect 
displacements on a sub-nanometer scale. However, their performance depends on mechanical–thermal 
noise, photodetector noise, fabrication imperfections, and assembly. From all these, the main 
disadvantage is the need to adjust the optical interrogation system relative to the moving MEMS 
component. Eklund and Shkel [18] demonstrated that the finesse of a Fiber Optic Fabry-Perot MEMS 
can decrease up to one order of magnitude due to surface roughness, curvature or a slight deviation 
from parallelism, thus greatly reducing the resolution of the sensor. Xiao-qi et al. [19] developed a 
fiber-optic MEMS pressure sensor for harsh environments based on Fabry–Perot interferometry. A 
dual-wavelength demodulation method was used to interrogate the sensor and results show that the 
sensor has reasonable linearity and sensitivity within 0.1 MPa to 3 MPa. However, the fabrication is 
complicated and expensive. In addition, misalignments between the sensor and the fiber cause an 
increase of the signal-to-noise ratio due to instability of the reflected signal. To overcome these 
limitations, integration techniques have to be developed which can be either hybrid (e.g. detachable 
connection of optical fibers with sensor heads). Another solution could also be the integration into 
MOEMS employing substrate integrated waveguides. However, one of the disadvantages of these 
waveguides is that leakage losses can be substantial, especially at high temperatures. 
 
 
3.2. MOEMS Fabry-Perot Sensors 
 
Fabry-Perot Interferometric techniques can be easily applied to membranes or cantilevers that, if 
fabricated with robust materials (e.g. Si, silicon nitride, SiC, etc.), can be utilized to develop contact-
free sensor components with high sturdiness in harsh conditions. Compared to sensors that utilize 
optical fibers or multi-chip structures [18, 19], single-chip Fabry-Perot MOEMS sensors do not require 
alignment or sophisticated optical stabilization techniques [7, 8, 20]. In contrast to cumbersome and 
ambiguous fringe-counting optical detection schemes associated with large cavity FP sensors used in 
the literature, the small cavity length of these sensors (2-3 µm) allows small intensity shifts to be 
uniquely related to the relative displacement of the moving mirror. This high resolution results in an 
improvement of functionality, reliability and sensitivity compared to classical fiber-optic sensors, and 
make them ideal for the manufacturing of on-chip smart systems at a minimum cost. 
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Haueis et al. [8] developed a Si-based resonant force sensor packaged with fiber-optic signal detection 
for high temperature operation. An off-chip capacitive detection system was also used to verify the 
operation of the sensor up to 175 °C. The optical detection showed a resolution of the resonator 
deflection to be more than ten times better than the capacitive detection. Wang et al. [20] developed a 
new Fabry-Perot pressure microsensor which has been successfully tested up to 30 psi and 120 °C. 
Over the pressure ranging from 0 to 21 psi, very small cross sensitivity to temperature was observed in 
mid or higher end of the pressure range. However, because of the bridge configuration of the sensor, a 
corrugated diaphragm needs to be used to alleviate both, the signal averaging effect and the cross-
sensitivity to temperature. 
 
 
4. Fabry-Perot MOEMS Sensor for High Temperature Applications 
 
We have developed the MOEMS Fabry-Perot displacement sensor (MFPD) shown in Fig. 1 that is 
suitable for high temperature applications and can be easily integrated with standard Si 
micromachining. Details on the development and fabrication were presented in Ref. [7]. The MFPD 
consists of a cantilever beam fabricated in low-stress LPCVD silicon nitride. The cantilever beam 
forms the top mirror of the Fabry-Perot interferometer while the silicon substrate below provides the 
bottom mirror. As shown schematically in Fig. 4, the two mirrors form an optical microcavity for a 
monochromatic laser beam incident at the top. For this cavity arrangement, the total interferometric 
light back-reflected depends on the height of the optical microcavity at the location where the laser 
beam is directed (spot). When the substrate vibrates, there is a relative deflection of the beam with 
respect to the substrate and hence a change in the microcavity height. If the mechanical characteristics 
of the device are known, the amplitude of the substrate motion can be calculated by measuring the 
back-reflected light. 
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Fig. 1. Fabry-Perot MOEMS displacement sensors with a fundamental 
resonant frequency of ~ 45 kHz [7]. 

 
 
To the best of our knowledge this MFPD sensor is the first surface micromachined Fabry-Perot in the 
literature that employs a single layered cantilevered structure together with a new extrinsic intensity-
modulated optical interrogation method based on the reflectance of the device (and not the 
transmittance) to measure displacement in high temperature environments. Cantilever beams have 
advantages over bridge structures because the lowest natural frequency is 16 % of a bridge with the 
same dimensions, allowing measurement of lower frequencies. Also residual stresses do not 
significantly affect the resonant frequency of cantilevers [21], but do change the resonant frequency of 
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a bridge operating at high temperatures [22]. In addition, they eliminate problems due to stress-
stiffening effects and variation of the optical path length due to coupled photo-elastic and thermal-
optical effects, all of which are critical to the successful realization of sensors for high temperature 
applications. 
 
 
4.1. Optical Signal 
 
The optical microcavity of the MFPD corresponds to a Fabry-Perot in reflectance and its optical 
response is given by the power reflectance, R, of the top of its surface [7]. Assuming no variation in 
the top mirror thickness (t) or the relaxed cavity height (h), R is only a function of the top layer 
thickness and the time-dependant air cavity height at the location of the laser beam spot. Fig. 3 shows 
the power reflectance of the MFPD as a function of the relaxed air gap height (dotted curve). This 
function was obtained from the optical signal shown in Fig. 2, measured for the MFPD type A shown 
in Fig. 1, vibrating at a frequency of 62 kHz, and fitted to the AC component of the theoretical power 
reflectance model described in detail in Ref. [7] with h, δr, and t1 as the fitting parameters. As it can be 
easily observed, the function is periodic (period λ/2) and represents the optical transfer function of the 
microcavity of the sensor. 
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Fig. 2. Measured interferometric optical signal from the MFPD cantilever beam A (Fig. 1) vibrating at an 
amplitude of the relative displacement of ~143.8 nm and fitted to the theoretical power reflectance. 
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Fig. 3. Reflectance of the MFPD type A shown in Fig. 1 as a function of air gap height. 
 
 
The total displacement of the beam with respect to the substrate is indicated by the solid line. The 
fitted values of h and t1 are within ~3.3 % and ~1.5 %, respectively, of the measured values listed in 
Table 1. The static air gap height at the location of the laser beam spot defines the operation point of 
the sensor which in this case is very close to the point of maximum slope or maximum sensitivity of 
the transfer function [7]. Motions as small as tenths of nanometers can be resolved using this new 
extrinsic intensity-modulated optical interrogation method. 
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Table 1. Summary of measured parameters for the Fabry-Perot MOEMS displacement sensors shown in Fig.1. 
 

Beam Type Length 
(µm) 

Width 
(µm) 

Etch-Hole 
diameter (µm) 

Air Gap @ 
spot (µm) Spot Location (µm) 

A 122.5 4.25 - 2.84 5 
B 119.6 8.17 - 2.66 17.5 
C 123.5 9.31 3.92 2.60 17.5 
D 118.5 13.39 5.56 2.62 22.5 

 
 
4.2. Frequency Response 
 
The experimental setup used for the determination of the frequency response of the MFPD sensors was 
described in Ref. [7] and it is presented schematically in Fig. 4. The optical measurement system 
detects the interferometric optical signal coming from the vibrating Fabry-Perot structure and 
transforms it into an electrical signal. This electrical signal is then processed to determine the relative 
deflection of the top mirror with respect to the bottom mirror of the MFPD at the frequency of 
excitation. The MFPD frequency response is determined by repeating this sequence for the different 
frequencies in the range of interest. 
 
 

 
 

Fig. 4. Schematic of the optical setup for the measurement of the interferometric 
back-reflected light (MFPD sensor shown as mounted). 

 
 
The experimental frequency response of all the MFPD cantilever beams listed in Table 1 and measured 
using the technique described above are shown in Fig. 5. These measured frequency responses were 
measured using a 10 nm amplitude harmonic excitation. The tests were performed at atmospheric pressure  
(14.7 psi) and room temperature (23 °C). Their average fundamental frequency is 43.5 ± 3 kHz and their total 
viscous damping factor (mode 1) vary from 0.19 to 0.3. Also shown in this figure are these responses fitted 
to the analytical vibration mechanical model with the resonant frequency (f) and the total viscous 
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damping factor (ζ) as fitting parameters. The excellent agreement between the experimental 
measurements and the analytical mechanical models suggests that air viscous damping is the dominant 
source of dissipation for these structures. For details in the analytical modeling the reader may refer to 
Ref. [7]. Furthermore, by decoupling the effects of squeeze-film and airflow damping, an array of 
MFPD microsensors will allow for the simultaneous detection of pressure and temperature in addition 
to displacement [22]. The primary means of viscous damping differentiation is the dependence of the 
viscosity and density of the air on temperature and pressure. By microfabricating an array of MFPD 
structures with different geometries, the air viscous damping effects can be modeled based on the 
height of the microcavities, resonant frequencies, and temperature and pressure of operation. Thus, 
successful decoupling of the damping coefficients will result in a sensitive sensor array capable of 
measuring both temperature and pressure in addition to displacement. Experimental verification of the 
use of the MFPD as a multifunctional sensor is underway. 
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Fig. 5. Measured and fitted frequency response for all MFPD sensors listed in Table 1 [7]. 
 
 
4.2. Temperature Dependence 
 
The mechanisms leading to temperature dependence of the MFPD frequency response are mainly due 
to (1) shift of the resonant frequency arising from the variation of the Young’s modulus, density and 
coefficient of thermal expansion of the SixNy film (2) variation of the take-off angle of the beam 
curling due to induced uniform stress (3) variation of the viscous damping coefficient due to variation 
of the density and the viscosity of the air, and (4) changes of the optical path lengths due to the 
coupled thermal-optical and photo-elastic effects [7]. 
 
For the MFPD type A depicted in Fig. 1, a variation of temperature from 23 °C to 600 °C causes a drift 
in the fundamental resonant frequency of about 6.1 %, which is much less than the 20 % drift reported 
for bridges in Ref. [23]. For the same MFPD, the take-off angle is ~5.7 mrad. Neglecting the effects of 
stress gradients, the same temperature change produces a variation in the take-off angle of ~0.38 mrad. 
This variant decreases the air gap height at the spot location by about 43 nm moving the point of 
operation of the sensor about 1.3 % and hence, decreasing the sensor’s optical sensitivity [7]. 
However, if the temperature of operation of the sensor is known, both these effects can be corrected 
for. 
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Another mechanism that leads to sensor temperature dependence is the air viscous damping which 
depends on the viscosity and the density of the air, both of which are dependent on temperature. Fig. 6 
shows the variation of the air viscous damping as a function of temperature for the FPMOD type A for 
the first two modes of vibration and at atmospheric pressure. It can be seen that the variation in viscous 
damping for a temperature varying from 23 °C to 600 °C is ~0.14. This corresponds to a decrease in 
relative displacement of ~2 and hence, a decrease of sensor sensitivity around the fundamental 
resonant frequency. However, the same variation of temperature only corresponds to a small variation 
of the optical path length (around 2.27 nm) due to the coupled thermal-optical and photo-elastic 
effects. Fig. 7 shows that the effect of the temperature is less significant if the point of operation is 
close to the point of maximum sensitivity [7]. 
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Fig. 6. Calculated temperature dependence of the total air viscous damping 
coefficient (n = 1, 2) for MFPD type A. 
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Fig. 7. Shift of the optical transfer function of the MFPD type A due to 
the temperature dependence of the optical path length. 

 
 
The above results show that the sensitivity of the MFPD at high temperatures is mainly influenced by 
the effects of the thermally induced stress and the air viscous damping. Thermally induced stress can 
shift the operation point of the sensor, thus affecting the optical sensitivity, but it has a small effect on 
the variation of the optical path length. The significant effect that the temperature has on the air 
viscous damping reduces the overall sensitivity of the sensor, especially in regions around the 
fundamental resonant frequency. However, if the temperature is known, both of these effects can be 
compensated. A temperature-controlled sensor chamber is being designed to measure the effect of 
temperature in the frequency response of the MFPD cantilever beam at high temperatures. 
 
Compared to standard interferometric techniques for the measurement of displacement (e.g. 
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stroboscopic and laser Doppler interferometers), the MFPD sensor needs neither a reference arm nor 
sophisticated stabilization techniques. Fig. 6 and Fig. 7 show that the power reflectance of the MFPD 
is a very sensitive measure of the air gap height. Using the solid MFPD cantilever beam type A, 
relative displacements as small as 0.139 nm Hz were measured [7]. Furthermore, the small size of the 
sensor, the materials in which it can be built, and its simple construction make it suitable for on-chip 
integration and ideal for high-temperature applications. Though the optical detection of the frequency 
response of the MFPD cantilever beam has been implemented for a bare sensor, our experimental 
results demonstrate the accuracy of the optical interferometric readout on the determination of the 
frequency response of any free standing micromechanical device at the wafer level. The very simple 
configuration offered by this optical interferometric system is being considered in the future for 
integration in the sensor package. 
 
 
5. Conclusions 
 
We have reviewed recent advances in MEMS sensors for harsh-environments focusing on fabricated 
devices. SiC and group III semiconductor materials such as AlN, are an excellent candidate for the 
development of MEMS and NEMS for harsh environments. The excellent physical properties of 
particularly SiC enables its operation in harsh environments (e.g. high temperature, high pressure, high 
g, radiation and biological or chemical corrosive media). Piezoelectric properties of AlN, and good 
optical properties of robust materials such as SiC and silicon nitride may allow the improvement of 
functionality, reliability and sensitivity of classical sensors giving the opportunity of building up on-
chip smart systems with a high degree of processing control. The review of different SiC sensor 
technologies shows unambiguously that although all necessary technology steps are well developed for 
the fabrication of SiC based MEMS devices, major problems such as reliability, packaging, wiring, 
and integration issues have to be overcome before they can be manufactured and used reliably in 
commercial high temperature applications. 
 
The adaptability, resistance to EMI and RFI and high sensitivity make MOEMS sensors ideal for 
applications in harsh environments. In the past few years, much progress has been made in the 
development of simpler processing techniques and simplification of MEMS sensing elements. A new 
Fabry-Perot MOEMS displacement sensor for HT applications was presented. Results show that the 
small influence of high temperatures on the sensitivity of this sensor offers advantages in terms of size, 
cost, and operation in high temperature applications. In addition, by microfabricating an array of 
MFPD structures with different geometries, successful decoupling of the damping coefficients will 
result in a sensitive sensor array capable of measuring both temperature and pressure in addition to 
displacement. Finally, the simple configuration of the optical detection system makes it ideal for 
integration in the sensor package. 
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