Tag Archives: Chemotherapy

BioMEMS Application-MEMS for Diabetic Retinopathy

Fundus photo showing focal laser surgery for d...

There is no neat, targeted way to treat diabetic retinopathy, a condition that could lead to blindness. Laser therapy can result in diminished side and night vision and the other current method used, the cancer drug docetaxel, clear from the system so quickly that high doses are needed, increasing toxicity to healthy tissue. The research group ANPRON tells us about a team of Canadian scientists who think they have found a solution for sufferers of diabetic retinopathy. They have made a MEMS device (micron-sized electromechanical systems) that could be implanted behind the eye and release docetaxel on command by an external magnet.

Innovation in BioMEMS-Apoptosis on Chips

People from BioMEMS research group @ University of auckland stated that

Their most recent work (Wlodkowic D, Khoshmanesh K, Sharpe JC, Darzynkiewicz Z, Cooper JM. Apoptosis goes on a chip: advances in the microfluidic analysis of programmed cell death. Anal Chem. 2011 Jun 16. [Epub ahead of print]) provides an innovative summary of the recent advances in miniaturized chip-based devices for the analysis of programmed cell death.it provides future prospects of the Lab-on-a-Chip devices with wide reaching perspectives in anti-cancer drug discovery and high-throughput cell-based screening routines.

Abstract:

World First: Localized Delivery of an Anti-Cancer Drug by Remote-Controlled Microcarriers

Soon, drug delivery that precisely targets cancerous cells without exposing the healthy surrounding tissue to the medication’s toxic effects will no longer be an oncologist’s dream but a medical reality, thanks to the work of Professor Sylvain Martel, Director of the Nanorobotics Laboratory at Polytechnique Montréal.

Known for being the world’s first researcher to have guided a magnetic sphere through a living artery, Professor Martel is announcing a new breakthrough in the field of nanomedicine. Using a magnetic resonance imaging (MRI) system, his team successfully guided microcarriers loaded with a dose of anti-cancer drug through the bloodstream of a living rabbit, right up to a targeted area in the liver, where the drug was successfully administered. This is a medical first that will help improve chemoembolization, a current treatment for liver cancer.

Microcarriers on a mission

Innovation in Targeted Drug Delivery Using Gold Coatings

Cancer cells photographed by camera attached t...

Cancer cells photographed by camera attached to microscope in time-lapse manner. Image via Wikipedia

The upside of chemotherapy is that it attacks cancer cells and kills them. The downside – and a steep downside it is – is that it is composed of highly toxic compounds that attack other cells of the body, too, resulting in any number of harmful side effects, from anemia to hair loss to nausea and vomiting.

The question concerning researchers is how do we deliver chemotherapy drugs to the harmful cells and leave the healthy cells alone?

“BREAST ON CHIP” IN PURDUE UNIVERSITY

Purdue University researchers have reproduced portions of the female breast in a tiny slide-sized model dubbed “breast on-a-chip” that will be used to test nanomedical approaches for the detection and treatment of breast cancer.

The model mimics the branching mammary duct system, where most breast cancers begin, and will serve as an “engineered organ” to study the use of nanoparticles to detect and target tumor cells within the ducts.

Sophie Lelièvre, associate professor of basic medical sciences in the School of Veterinary Medicine, and James Leary, SVM Professor of Nanomedicine and professor of basic medical sciences in the School of Veterinary Medicine and professor of biomedical engineering in the Weldon School of Biomedical Engineering, led the team.