There’s Smart, and then there’s Mega-Smart
Biomedical engineers are smart people; this is a universal truth. As a rule, dim-witted people do not develop bioartificial organs or design pacemakers. But then there are the pioneers who have taken the biomedical field by storm over the past century, earning more awards and patents and inventing more devices than any mere mortal should. You could refer to this rare breed as The Ridiculously Smart Bioengineering Club, a league of gifted souls with
DNA like Einstein’s.
What Do They Have in Common?
Let’s start with biophysicist
Otto Schmitt. Though his parents weren’t scientists, Otto was exposed at the age of 16 to the work of his older brother Frank. Frank became a professor of zoology in 1929, and Otto was allowed to “gadgeteer” in Frank’s laboratory and create instrumentation (
www.thebakken.org). Otto would also do experiments at home, much to his mother’s chagrin. His mom fainted when she went into his bedroom one day and saw Otto with sparks flying out of his nose and fingers; he had crafted his own rudimentary Tesla Ball out of spare parts to make his hair stand straight up. Despite his crazy antics with electricity, Otto survived his youth and went on to invent devices like the cathode follower.
Leslie Geddes has taught one-fifth of all biomedical engineers currently in practice. He’s patented everything from a baby pacifier that delivers medication to biomaterials (
www.mit.edu). As a kid, Leslie’s dad would bring home
radio parts from work for his son to tinker with. Because some relatives were physicians, Leslie decided he would like to combine electronics with
medicine.
Extraordinary curiosity is a common theme in the early years of the genius bioengineers.
Robert Langer, currently Professor of Chemical
Engineering at
MIT in Cambridge, received a Gilbert
chemistry and microscope set from his parents as a young boy. He was fascinated watching chemical color changes, and enjoyed watching shrimp grow with his little microscope (
www.thebiotechclub.org). This young chemist would grow up to receive more than 600 patents and 160 major awards, and be the most cited engineer in history. His controlled drug delivery developments have alleviated human pain for countless patients. The stubborn Langer is oft-quoted as saying, “A lot of times somebody will tell you that your idea, or your invention, can’t be done. I think that’s very rarely true. If you believe in yourself and if you really work hard and stick to it, I believe there is very little that is impossible.”
This stubbornness gene can be found in
Alfred E. Mann, entrepreneurial physicist and philanthropist billionaire. He’s said, “To say we can’t do something because other people have failed is not good enough for me” (
www.inhealth.org).
It seems the formula for
biomedical engineering mega-success is one part insatiable curiosity, one part influence by mentors, two parts giftedness, and three parts stubbornness.
28.3720677.318543
Permanent link to this post (457 words, 1 image, estimated 1:50 mins reading time)