Zeitels was already starting to develop a new type of material that could be implanted into scarred vocal cords to restore their normal function. In 2002, he enlisted the help of MIT’s Robert Langer, the David H. Koch Institute Professor in the Department of Chemical Engineering, an expert in developing polymers for biomedical applications.
A new research paper sheds light on the way antibodies distinguish between different but closely related ‘biomarkers’ – proteins which reveal information about the condition of the human body. This new understanding could enable pharmaceutical companies to develop new technologies for quickly diagnosing and treating fatal diseases.
All diseases have proteins, or concentrations of proteins, specifically linked to them called biomarkers. Identifying these can prove a powerful diagnostic tool. These biomarkers are detected by immunoassays – a test which mixes a substance (eg blood, urine) with antibodies, which bind to the protein if it is present. The antibodies can then be measured to identify the level of the biomarker, which in turn indicates the presence and extent of an illness.
Researchers at Purdue University’s Weldon School of Biomedical Engineering are in the process of developing scaffold-like materials that promises to speed up the recovery process for patients. The wound healing material has a fast curing time once inside the body.
Alyssa Panitch, an associate professor at Purdue University, heads the research team that discovered the liquid wound healing material, after numerous years of clinical testing at the Weldon School of Biomedical Engineering. The material is being touted as a modern medicine breakthrough and promises to create an expedited process for burn victims and those that require the fastest recovery time possible.
The research is showing that the liquid material can be injected directly into a wound site and will solidify and fill any space needed. Once inside the body, the liquid spreads out and forms an almost immediate bonding for repairs of such wound treatments as mending damaged bones, spinal cord fusions, arterial reattachment, and other tissue rebuilding procedures.
Buddy D. Ratner University of Washington Engineered Biomaterials
Biomaterials are materials (synthetic and natural; solid and sometimes liquid) that are used in medical devices or in contact with biological systems. Biomaterials as a field has seen steady growth over its approximately half century of existence and uses ideas from medicine, biology, chemistry, materials science and engineering. There is also a powerful human side to biomaterials that considers ethics, law and the health care delivery system. This brief introduction overviews some key characteristics of the field of biomaterials and outlines issues and major subdivisons.