Conducting transcranial magnetic stimulation based research studies under supervision of PI. Candidates will be fully trained in the procedure and will be working along with clinician and other trained technologists.
Neuroprosthetics (also called Neural Prosthetics) is a discipline related to neuroscience and biomedical engineering concerned with developing neural prostheses, artificial implantable devices to replace or improve the function of an impaired nervous system.Neuroprosthetics are the set of physical devices that interact with the brain or other neural tissue to augment, restore, or otherwise impact function.
Neuroprosthetics are electrical stimulation technologies that replace or assist damaged or malfunctioning neuromuscular organ systems and attempt to restore normal body processes, create or improve function, and/or reduce pain. These systems are either implanted or worn externally on the body. Such assistive devices range from intramuscular stimulation systems designed to limit limb atrophy in paralysis, to implanted bladder voiding systems and more complex implanted neuromuscular control.
The process of transitioning this technology into a clinically useful device will require two parallel paths of research. In the first path, experimental paradigms involving microelectrode array recordings in behaving animals will be developed in conjunction with signal processing techniques for studying the unknown aspects of neural coding and functional neurophysiology. These signal processing techniques will then be implemented in portable, low-power, wireless hardware.The second path, high-density array ECoG recordings in humans, provides a less invasive technique for neural interfaces however it still remains unknown how to extract BMI control signatures that are sufficiently spatially and temporally resolved. Neuroprosthetics is an area of intense scientific and clinical interest and rapid progress. The word’ prosthesis’ is derived from the Greek word for ‘addition’. A breakdown of the word includes ‘pros’ meaning ‘to’, and ‘thesis’, meaning ‘a placing’. Neuroprosthetic are in their infancy just now, but they offer two things that are truly wonderful:
1. Bypassing the body, and letting the mind interface directly with VR, for the ultimate immersive experience – the virtual body becomes as the normal functioning body
2. Augmented body parts will be able to be fitted to the body, and controlled by the brain as if you were born with them – after a little training, without conscious thought.
The proposed workshop is going to explore the various research problems that require integrated support from medical-engineering experts. The hands on session on biostatistics will provide various methods to test the results and to relate its importance for clinical diagnosis.
Students can refer this post to start working on their projects. Students can take ideas and start the project
Biomedical electronics research is being driven by the aging “baby-boomer” population and their medical needs. This phenomenon is spurring fast development of new biotechnologies and need for access to innovative means of medical diagnosis and treatment in preventive medicine. Subsequently, the technologies of implants and advanced wireless electronic media will help alleviate rising medical costs in today’s society and extend the average longevity with a quality life in our later years.
“Verbally”, an ingenious new Augmentative and Alternative Communication (AAC) aid launched by Intuary, on May 18,2011, previously added to the iTunes app store of the iPad in March this year, has carved out a niche for itself in providing effective functional and interactive communication to people with speech disabilities, and thereby, ameliorating the diabolic conditions faced by them while trying to establish full interpersonal communications and social closeness and in removing the hurdles to developing their potential for education, employment and independence.