The biological and medical fields have seen great advances in biomolecules. This review is meant to provide an overview of the various types of biosensors and biochips that have been developed for biological and medical applications, along with significant advances over the last several years in these technologies. It also attempts to describe various classification schemes that can be used for categorizing the different biosensors and provide relevant examples of these classification schemes from recent literature.
Researchers at Oregon State University have tapped into the extraordinary power of carbon “nanotubes” to increase the speed of biological sensors, a technology that might one day allow a doctor to routinely perform lab tests in minutes, speeding diagnosis and treatment while reducing costs.
The new findings have almost tripled the speed of prototype nano-biosensors, and should find applications not only in medicine but in toxicology, environmental monitoring, new drug development and other fields.
The research was just reported in Lab on a Chip, a professional journal. More refinements are necessary before the systems are ready for commercial production, scientists say, but they hold great potential.
With an invention that can be made from some of the same parts used in CD players, University of Michigan researchers have developed a way to measure the growth and drug susceptibility of individual bacterial cells without the use of a microscope.