Tag Archives: Technology

BIOMEDICAL ENGINEERS ARE GIFTED ONES ALWAYS

There’s Smart, and then there’s Mega-Smart
Biomedical engineers are smart people; this is a universal truth. As a rule, dim-witted people do not develop bioartificial organs or design pacemakers. But then there are the pioneers who have taken the biomedical field by storm over the past century, earning more awards and patents and inventing more devices than any mere mortal should. You could refer to this rare breed as The Ridiculously Smart Bioengineering Club, a league of gifted souls with DNA like Einstein’s.
What Do They Have in Common?
Let’s start with biophysicist Otto Schmitt. Though his parents weren’t scientists, Otto was exposed at the age of 16 to the work of his older brother Frank. Frank became a professor of zoology in 1929, and Otto was allowed to “gadgeteer” in Frank’s laboratory and create instrumentation (www.thebakken.org). Otto would also do experiments at home, much to his mother’s chagrin. His mom fainted when she went into his bedroom one day and saw Otto with sparks flying out of his nose and fingers; he had crafted his own rudimentary Tesla Ball out of spare parts to make his hair stand straight up. Despite his crazy antics with electricity, Otto survived his youth and went on to invent devices like the cathode follower.
Leslie Geddes has taught one-fifth of all biomedical engineers currently in practice. He’s patented everything from a baby pacifier that delivers medication to biomaterials (www.mit.edu). As a kid, Leslie’s dad would bring home radio parts from work for his son to tinker with. Because some relatives were physicians, Leslie decided he would like to combine electronics with medicine.
Extraordinary curiosity is a common theme in the early years of the genius bioengineers. Robert Langer, currently Professor of Chemical Engineering at MIT in Cambridge, received a Gilbert chemistry and microscope set from his parents as a young boy. He was fascinated watching chemical color changes, and enjoyed watching shrimp grow with his little microscope (www.thebiotechclub.org). This young chemist would grow up to receive more than 600 patents and 160 major awards, and be the most cited engineer in history. His controlled drug delivery developments have alleviated human pain for countless patients. The stubborn Langer is oft-quoted as saying, “A lot of times somebody will tell you that your idea, or your invention, can’t be done. I think that’s very rarely true. If you believe in yourself and if you really work hard and stick to it, I believe there is very little that is impossible.”
This stubbornness gene can be found in Alfred E. Mann, entrepreneurial physicist and philanthropist billionaire. He’s said, “To say we can’t do something because other people have failed is not good enough for me” (www.inhealth.org).
It seems the formula for biomedical engineering mega-success is one part insatiable curiosity, one part influence by mentors, two parts giftedness, and three parts stubbornness.
Reblog this post [with Zemanta]

HOW TO DESIGN A CAREER IN BIOMEDICAL ENGINEERING-FROM IEEE PAPER

ABSTRACT

What kind of career do you imagine for yourself?  Doctor? Lawyer?
Scientist? Engineer? Teacher? CEO? Manager? Salesperson?
A university degree in biomedical engineering will prepare you for
all of these professions and more.  Biomedical engineers use their expert-
ise in biology, medicine, physics, mathematics, engineering science and
communication to make the world a healthier place.   The challenges cre-
ated by the diversity and complexity of living systems require creative,
knowledgeable, and imaginative people working in teams of physicians,
scientists, engineers, and even business folk to monitor, restore and
enhance normal body function.  The biomedical engineer is ideally
trained to work at the intersection of science, medicine and mathematics
to solve biological and medical problems.

PROCESING THE RADIOGRAPH-DIGITAL IMAGE PROCESSING NOTES

LINK UPDATED

THIS IS THE BEST ARTICLE ON PROCESSING THE RADIOGRAPH AS FAR AS DIGITAL IMAGE PROCESSING IS CONCERNED

SUMMARY HAS BEEN GIVEN BELOW

FULL ARTICLE CAN BE DOWNLOADED FROM THIS LINK GIVEN BELOW IT IS REALLY INFORMATIVE AND EASY TO LEARN

IT IS A SURE SHOT QUESTION OF MDU ROHTAKL ALSO.

DOWNLOAD LINK

SUMMARY

When an X-ray film has been exposed, it must be processed in order to produce a

permanent visible radiographic image that can be kept without deterioration for a number of

years. Processing transforms the latent image into a visible image. The term for the

several procedures that collectively produce the visible, permanent image is processing

and consists of developing, rinsing, fixing, washing and drying procedures

SHORT NOTES ON DIGITAL IMAGE PROCESSING-BIOMEDICAL NOTES

IMAGE   PROCESSING

In this article, the basics of capturing an image, image processing to modify and enhance the image are discussed. There are many applications for Image Processing like surveillance, navigation, and robotics. Robotics is a very interesting field and promises future development so it is chosen as an example to explain the various aspects involved in Image Processing .

DIFFERENT ROLES OF A BIOMEDICAL ENGINEER IN JOBS

Biomedical engineers are an important part of the medical community. The knowledge, inventions, and people that are behind many biomedical engineering jobs are responsible for improving lives across the globe by creating new theories on life systems or designing medical instruments.

The contributions made by those employed in biomedical engineering jobs are countless: minuscule devices to inhibit cell growth; artificial bones, tendons, and discs; highly sensitive monitors and medical imaging systems; artificial hearts; synthetic blood; medical robotics; and tissue engineering – to name just a few.

Nanoholes and Nanoparticles: Applications to Biomedical Microdevices

Biomedical microdevices include any miniaturized devices or systems for biomedical or biological applications, from simple sensors for monitoring a single biological, to complex micro total analysis or lab-on-a-chip instruments that integrate multiple laboratory functions together with microfluidic sample manipulation. Biomedical microdevice and systems research is an exciting multi-disciplinary field intersecting engineering, physics, chemistry, nanotechnology and biotechnology.

Micromachining, originally based in the microelectronic industry, forms the foundation for this exciting field, in which biosensors, microchannel fluid transport, and other micro mechanical, optical, chemical, and fluidic components are fabricated and integrated for applications ranging from monitoring biofluid levels and bed side rapid diagnosis to studying single cell antibody production. Furthermore, micromachining can be combined with nanostructures or nanomaterials to result in new technologies and techniques that continue to advance the field in new ways.