Tag Archives: Weldon School of Biomedical Engineering

MedMon: Firewall for Wireless Medical Devices

Researchers working at Purdue University and Princeton University have developed a proof-of-concept device, called MedMon, that blocks hackers from hijacking or interfering with wireless medical devices, like pacemakers, insulin pumps, or brain implants. The researchers were motivated to work on the problem after discovering how easy it was for hackers to break into current wireless medical systems.

The researchers believe that hundreds of thousands of people using wireless insulin pumps or wireless-enabled pacemakers are currently vulnerable. Other devices, not yet in the market, like brain implants that manage epilepsy and “smart prosthetics” could also be hacked. Despite the potential for hacking, the researchers admit the chances that any given would be hacked is low.

Biomaterials Research Update: New Wound Healing Materials at Purdue

Line art drawing of a bandage being applied.

Image via Wikipedia

Researchers at Purdue University’s Weldon School of Biomedical Engineering are in the process of developing scaffold-like materials that promises to speed up the recovery process for patients. The wound healing material has a fast curing time once inside the body.

Alyssa Panitch, an associate professor at Purdue University, heads the research team that discovered the liquid wound healing material, after numerous years of clinical testing at the Weldon School of Biomedical Engineering. The material is being touted as a modern medicine breakthrough and promises to create an expedited process for burn victims and those that require the fastest recovery time possible.

The research is showing that the liquid material can be injected directly into a wound site and will solidify and fill any space needed. Once inside the body, the liquid spreads out and forms an almost immediate bonding for repairs of such wound treatments as mending damaged bones, spinal cord fusions, arterial reattachment, and other tissue rebuilding procedures.


Purdue University researchers have reproduced portions of the female breast in a tiny slide-sized model dubbed “breast on-a-chip” that will be used to test nanomedical approaches for the detection and treatment of breast cancer.

The model mimics the branching mammary duct system, where most breast cancers begin, and will serve as an “engineered organ” to study the use of nanoparticles to detect and target tumor cells within the ducts.

Sophie Lelièvre, associate professor of basic medical sciences in the School of Veterinary Medicine, and James Leary, SVM Professor of Nanomedicine and professor of basic medical sciences in the School of Veterinary Medicine and professor of biomedical engineering in the Weldon School of Biomedical Engineering, led the team.